lib.go 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921
  1. // Go support for Protocol Buffers - Google's data interchange format
  2. //
  3. // Copyright 2010 The Go Authors. All rights reserved.
  4. // https://github.com/golang/protobuf
  5. //
  6. // Redistribution and use in source and binary forms, with or without
  7. // modification, are permitted provided that the following conditions are
  8. // met:
  9. //
  10. // * Redistributions of source code must retain the above copyright
  11. // notice, this list of conditions and the following disclaimer.
  12. // * Redistributions in binary form must reproduce the above
  13. // copyright notice, this list of conditions and the following disclaimer
  14. // in the documentation and/or other materials provided with the
  15. // distribution.
  16. // * Neither the name of Google Inc. nor the names of its
  17. // contributors may be used to endorse or promote products derived from
  18. // this software without specific prior written permission.
  19. //
  20. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  21. // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  22. // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  23. // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  24. // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  25. // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  26. // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  27. // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  28. // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  29. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  30. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  31. /*
  32. Package proto converts data structures to and from the wire format of
  33. protocol buffers. It works in concert with the Go source code generated
  34. for .proto files by the protocol compiler.
  35. A summary of the properties of the protocol buffer interface
  36. for a protocol buffer variable v:
  37. - Names are turned from camel_case to CamelCase for export.
  38. - There are no methods on v to set fields; just treat
  39. them as structure fields.
  40. - There are getters that return a field's value if set,
  41. and return the field's default value if unset.
  42. The getters work even if the receiver is a nil message.
  43. - The zero value for a struct is its correct initialization state.
  44. All desired fields must be set before marshaling.
  45. - A Reset() method will restore a protobuf struct to its zero state.
  46. - Non-repeated fields are pointers to the values; nil means unset.
  47. That is, optional or required field int32 f becomes F *int32.
  48. - Repeated fields are slices.
  49. - Helper functions are available to aid the setting of fields.
  50. msg.Foo = proto.String("hello") // set field
  51. - Constants are defined to hold the default values of all fields that
  52. have them. They have the form Default_StructName_FieldName.
  53. Because the getter methods handle defaulted values,
  54. direct use of these constants should be rare.
  55. - Enums are given type names and maps from names to values.
  56. Enum values are prefixed by the enclosing message's name, or by the
  57. enum's type name if it is a top-level enum. Enum types have a String
  58. method, and a Enum method to assist in message construction.
  59. - Nested messages, groups and enums have type names prefixed with the name of
  60. the surrounding message type.
  61. - Extensions are given descriptor names that start with E_,
  62. followed by an underscore-delimited list of the nested messages
  63. that contain it (if any) followed by the CamelCased name of the
  64. extension field itself. HasExtension, ClearExtension, GetExtension
  65. and SetExtension are functions for manipulating extensions.
  66. - Oneof field sets are given a single field in their message,
  67. with distinguished wrapper types for each possible field value.
  68. - Marshal and Unmarshal are functions to encode and decode the wire format.
  69. When the .proto file specifies `syntax="proto3"`, there are some differences:
  70. - Non-repeated fields of non-message type are values instead of pointers.
  71. - Enum types do not get an Enum method.
  72. The simplest way to describe this is to see an example.
  73. Given file test.proto, containing
  74. package example;
  75. enum FOO { X = 17; }
  76. message Test {
  77. required string label = 1;
  78. optional int32 type = 2 [default=77];
  79. repeated int64 reps = 3;
  80. optional group OptionalGroup = 4 {
  81. required string RequiredField = 5;
  82. }
  83. oneof union {
  84. int32 number = 6;
  85. string name = 7;
  86. }
  87. }
  88. The resulting file, test.pb.go, is:
  89. package example
  90. import proto "github.com/golang/protobuf/proto"
  91. import math "math"
  92. type FOO int32
  93. const (
  94. FOO_X FOO = 17
  95. )
  96. var FOO_name = map[int32]string{
  97. 17: "X",
  98. }
  99. var FOO_value = map[string]int32{
  100. "X": 17,
  101. }
  102. func (x FOO) Enum() *FOO {
  103. p := new(FOO)
  104. *p = x
  105. return p
  106. }
  107. func (x FOO) String() string {
  108. return proto.EnumName(FOO_name, int32(x))
  109. }
  110. func (x *FOO) UnmarshalJSON(data []byte) error {
  111. value, err := proto.UnmarshalJSONEnum(FOO_value, data)
  112. if err != nil {
  113. return err
  114. }
  115. *x = FOO(value)
  116. return nil
  117. }
  118. type Test struct {
  119. Label *string `protobuf:"bytes,1,req,name=label" json:"label,omitempty"`
  120. Type *int32 `protobuf:"varint,2,opt,name=type,def=77" json:"type,omitempty"`
  121. Reps []int64 `protobuf:"varint,3,rep,name=reps" json:"reps,omitempty"`
  122. Optionalgroup *Test_OptionalGroup `protobuf:"group,4,opt,name=OptionalGroup" json:"optionalgroup,omitempty"`
  123. // Types that are valid to be assigned to Union:
  124. // *Test_Number
  125. // *Test_Name
  126. Union isTest_Union `protobuf_oneof:"union"`
  127. XXX_unrecognized []byte `json:"-"`
  128. }
  129. func (m *Test) Reset() { *m = Test{} }
  130. func (m *Test) String() string { return proto.CompactTextString(m) }
  131. func (*Test) ProtoMessage() {}
  132. type isTest_Union interface {
  133. isTest_Union()
  134. }
  135. type Test_Number struct {
  136. Number int32 `protobuf:"varint,6,opt,name=number"`
  137. }
  138. type Test_Name struct {
  139. Name string `protobuf:"bytes,7,opt,name=name"`
  140. }
  141. func (*Test_Number) isTest_Union() {}
  142. func (*Test_Name) isTest_Union() {}
  143. func (m *Test) GetUnion() isTest_Union {
  144. if m != nil {
  145. return m.Union
  146. }
  147. return nil
  148. }
  149. const Default_Test_Type int32 = 77
  150. func (m *Test) GetLabel() string {
  151. if m != nil && m.Label != nil {
  152. return *m.Label
  153. }
  154. return ""
  155. }
  156. func (m *Test) GetType() int32 {
  157. if m != nil && m.Type != nil {
  158. return *m.Type
  159. }
  160. return Default_Test_Type
  161. }
  162. func (m *Test) GetOptionalgroup() *Test_OptionalGroup {
  163. if m != nil {
  164. return m.Optionalgroup
  165. }
  166. return nil
  167. }
  168. type Test_OptionalGroup struct {
  169. RequiredField *string `protobuf:"bytes,5,req" json:"RequiredField,omitempty"`
  170. }
  171. func (m *Test_OptionalGroup) Reset() { *m = Test_OptionalGroup{} }
  172. func (m *Test_OptionalGroup) String() string { return proto.CompactTextString(m) }
  173. func (m *Test_OptionalGroup) GetRequiredField() string {
  174. if m != nil && m.RequiredField != nil {
  175. return *m.RequiredField
  176. }
  177. return ""
  178. }
  179. func (m *Test) GetNumber() int32 {
  180. if x, ok := m.GetUnion().(*Test_Number); ok {
  181. return x.Number
  182. }
  183. return 0
  184. }
  185. func (m *Test) GetName() string {
  186. if x, ok := m.GetUnion().(*Test_Name); ok {
  187. return x.Name
  188. }
  189. return ""
  190. }
  191. func init() {
  192. proto.RegisterEnum("example.FOO", FOO_name, FOO_value)
  193. }
  194. To create and play with a Test object:
  195. package main
  196. import (
  197. "log"
  198. "github.com/golang/protobuf/proto"
  199. pb "./example.pb"
  200. )
  201. func main() {
  202. test := &pb.Test{
  203. Label: proto.String("hello"),
  204. Type: proto.Int32(17),
  205. Reps: []int64{1, 2, 3},
  206. Optionalgroup: &pb.Test_OptionalGroup{
  207. RequiredField: proto.String("good bye"),
  208. },
  209. Union: &pb.Test_Name{"fred"},
  210. }
  211. data, err := proto.Marshal(test)
  212. if err != nil {
  213. log.Fatal("marshaling error: ", err)
  214. }
  215. newTest := &pb.Test{}
  216. err = proto.Unmarshal(data, newTest)
  217. if err != nil {
  218. log.Fatal("unmarshaling error: ", err)
  219. }
  220. // Now test and newTest contain the same data.
  221. if test.GetLabel() != newTest.GetLabel() {
  222. log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel())
  223. }
  224. // Use a type switch to determine which oneof was set.
  225. switch u := test.Union.(type) {
  226. case *pb.Test_Number: // u.Number contains the number.
  227. case *pb.Test_Name: // u.Name contains the string.
  228. }
  229. // etc.
  230. }
  231. */
  232. package proto
  233. import (
  234. "encoding/json"
  235. "errors"
  236. "fmt"
  237. "log"
  238. "reflect"
  239. "sort"
  240. "strconv"
  241. "sync"
  242. )
  243. var errInvalidUTF8 = errors.New("proto: invalid UTF-8 string")
  244. // Message is implemented by generated protocol buffer messages.
  245. type Message interface {
  246. Reset()
  247. String() string
  248. ProtoMessage()
  249. }
  250. // Stats records allocation details about the protocol buffer encoders
  251. // and decoders. Useful for tuning the library itself.
  252. type Stats struct {
  253. Emalloc uint64 // mallocs in encode
  254. Dmalloc uint64 // mallocs in decode
  255. Encode uint64 // number of encodes
  256. Decode uint64 // number of decodes
  257. Chit uint64 // number of cache hits
  258. Cmiss uint64 // number of cache misses
  259. Size uint64 // number of sizes
  260. }
  261. // Set to true to enable stats collection.
  262. const collectStats = false
  263. var stats Stats
  264. // GetStats returns a copy of the global Stats structure.
  265. func GetStats() Stats { return stats }
  266. // A Buffer is a buffer manager for marshaling and unmarshaling
  267. // protocol buffers. It may be reused between invocations to
  268. // reduce memory usage. It is not necessary to use a Buffer;
  269. // the global functions Marshal and Unmarshal create a
  270. // temporary Buffer and are fine for most applications.
  271. type Buffer struct {
  272. buf []byte // encode/decode byte stream
  273. index int // read point
  274. deterministic bool
  275. }
  276. // NewBuffer allocates a new Buffer and initializes its internal data to
  277. // the contents of the argument slice.
  278. func NewBuffer(e []byte) *Buffer {
  279. return &Buffer{buf: e}
  280. }
  281. // Reset resets the Buffer, ready for marshaling a new protocol buffer.
  282. func (p *Buffer) Reset() {
  283. p.buf = p.buf[0:0] // for reading/writing
  284. p.index = 0 // for reading
  285. }
  286. // SetBuf replaces the internal buffer with the slice,
  287. // ready for unmarshaling the contents of the slice.
  288. func (p *Buffer) SetBuf(s []byte) {
  289. p.buf = s
  290. p.index = 0
  291. }
  292. // Bytes returns the contents of the Buffer.
  293. func (p *Buffer) Bytes() []byte { return p.buf }
  294. // SetDeterministic sets whether to use deterministic serialization.
  295. //
  296. // Deterministic serialization guarantees that for a given binary, equal
  297. // messages will always be serialized to the same bytes. This implies:
  298. //
  299. // - Repeated serialization of a message will return the same bytes.
  300. // - Different processes of the same binary (which may be executing on
  301. // different machines) will serialize equal messages to the same bytes.
  302. //
  303. // Note that the deterministic serialization is NOT canonical across
  304. // languages. It is not guaranteed to remain stable over time. It is unstable
  305. // across different builds with schema changes due to unknown fields.
  306. // Users who need canonical serialization (e.g., persistent storage in a
  307. // canonical form, fingerprinting, etc.) should define their own
  308. // canonicalization specification and implement their own serializer rather
  309. // than relying on this API.
  310. //
  311. // If deterministic serialization is requested, map entries will be sorted
  312. // by keys in lexographical order. This is an implementation detail and
  313. // subject to change.
  314. func (p *Buffer) SetDeterministic(deterministic bool) {
  315. p.deterministic = deterministic
  316. }
  317. /*
  318. * Helper routines for simplifying the creation of optional fields of basic type.
  319. */
  320. // Bool is a helper routine that allocates a new bool value
  321. // to store v and returns a pointer to it.
  322. func Bool(v bool) *bool {
  323. return &v
  324. }
  325. // Int32 is a helper routine that allocates a new int32 value
  326. // to store v and returns a pointer to it.
  327. func Int32(v int32) *int32 {
  328. return &v
  329. }
  330. // Int is a helper routine that allocates a new int32 value
  331. // to store v and returns a pointer to it, but unlike Int32
  332. // its argument value is an int.
  333. func Int(v int) *int32 {
  334. p := new(int32)
  335. *p = int32(v)
  336. return p
  337. }
  338. // Int64 is a helper routine that allocates a new int64 value
  339. // to store v and returns a pointer to it.
  340. func Int64(v int64) *int64 {
  341. return &v
  342. }
  343. // Float32 is a helper routine that allocates a new float32 value
  344. // to store v and returns a pointer to it.
  345. func Float32(v float32) *float32 {
  346. return &v
  347. }
  348. // Float64 is a helper routine that allocates a new float64 value
  349. // to store v and returns a pointer to it.
  350. func Float64(v float64) *float64 {
  351. return &v
  352. }
  353. // Uint32 is a helper routine that allocates a new uint32 value
  354. // to store v and returns a pointer to it.
  355. func Uint32(v uint32) *uint32 {
  356. return &v
  357. }
  358. // Uint64 is a helper routine that allocates a new uint64 value
  359. // to store v and returns a pointer to it.
  360. func Uint64(v uint64) *uint64 {
  361. return &v
  362. }
  363. // String is a helper routine that allocates a new string value
  364. // to store v and returns a pointer to it.
  365. func String(v string) *string {
  366. return &v
  367. }
  368. // EnumName is a helper function to simplify printing protocol buffer enums
  369. // by name. Given an enum map and a value, it returns a useful string.
  370. func EnumName(m map[int32]string, v int32) string {
  371. s, ok := m[v]
  372. if ok {
  373. return s
  374. }
  375. return strconv.Itoa(int(v))
  376. }
  377. // UnmarshalJSONEnum is a helper function to simplify recovering enum int values
  378. // from their JSON-encoded representation. Given a map from the enum's symbolic
  379. // names to its int values, and a byte buffer containing the JSON-encoded
  380. // value, it returns an int32 that can be cast to the enum type by the caller.
  381. //
  382. // The function can deal with both JSON representations, numeric and symbolic.
  383. func UnmarshalJSONEnum(m map[string]int32, data []byte, enumName string) (int32, error) {
  384. if data[0] == '"' {
  385. // New style: enums are strings.
  386. var repr string
  387. if err := json.Unmarshal(data, &repr); err != nil {
  388. return -1, err
  389. }
  390. val, ok := m[repr]
  391. if !ok {
  392. return 0, fmt.Errorf("unrecognized enum %s value %q", enumName, repr)
  393. }
  394. return val, nil
  395. }
  396. // Old style: enums are ints.
  397. var val int32
  398. if err := json.Unmarshal(data, &val); err != nil {
  399. return 0, fmt.Errorf("cannot unmarshal %#q into enum %s", data, enumName)
  400. }
  401. return val, nil
  402. }
  403. // DebugPrint dumps the encoded data in b in a debugging format with a header
  404. // including the string s. Used in testing but made available for general debugging.
  405. func (p *Buffer) DebugPrint(s string, b []byte) {
  406. var u uint64
  407. obuf := p.buf
  408. index := p.index
  409. p.buf = b
  410. p.index = 0
  411. depth := 0
  412. fmt.Printf("\n--- %s ---\n", s)
  413. out:
  414. for {
  415. for i := 0; i < depth; i++ {
  416. fmt.Print(" ")
  417. }
  418. index := p.index
  419. if index == len(p.buf) {
  420. break
  421. }
  422. op, err := p.DecodeVarint()
  423. if err != nil {
  424. fmt.Printf("%3d: fetching op err %v\n", index, err)
  425. break out
  426. }
  427. tag := op >> 3
  428. wire := op & 7
  429. switch wire {
  430. default:
  431. fmt.Printf("%3d: t=%3d unknown wire=%d\n",
  432. index, tag, wire)
  433. break out
  434. case WireBytes:
  435. var r []byte
  436. r, err = p.DecodeRawBytes(false)
  437. if err != nil {
  438. break out
  439. }
  440. fmt.Printf("%3d: t=%3d bytes [%d]", index, tag, len(r))
  441. if len(r) <= 6 {
  442. for i := 0; i < len(r); i++ {
  443. fmt.Printf(" %.2x", r[i])
  444. }
  445. } else {
  446. for i := 0; i < 3; i++ {
  447. fmt.Printf(" %.2x", r[i])
  448. }
  449. fmt.Printf(" ..")
  450. for i := len(r) - 3; i < len(r); i++ {
  451. fmt.Printf(" %.2x", r[i])
  452. }
  453. }
  454. fmt.Printf("\n")
  455. case WireFixed32:
  456. u, err = p.DecodeFixed32()
  457. if err != nil {
  458. fmt.Printf("%3d: t=%3d fix32 err %v\n", index, tag, err)
  459. break out
  460. }
  461. fmt.Printf("%3d: t=%3d fix32 %d\n", index, tag, u)
  462. case WireFixed64:
  463. u, err = p.DecodeFixed64()
  464. if err != nil {
  465. fmt.Printf("%3d: t=%3d fix64 err %v\n", index, tag, err)
  466. break out
  467. }
  468. fmt.Printf("%3d: t=%3d fix64 %d\n", index, tag, u)
  469. case WireVarint:
  470. u, err = p.DecodeVarint()
  471. if err != nil {
  472. fmt.Printf("%3d: t=%3d varint err %v\n", index, tag, err)
  473. break out
  474. }
  475. fmt.Printf("%3d: t=%3d varint %d\n", index, tag, u)
  476. case WireStartGroup:
  477. fmt.Printf("%3d: t=%3d start\n", index, tag)
  478. depth++
  479. case WireEndGroup:
  480. depth--
  481. fmt.Printf("%3d: t=%3d end\n", index, tag)
  482. }
  483. }
  484. if depth != 0 {
  485. fmt.Printf("%3d: start-end not balanced %d\n", p.index, depth)
  486. }
  487. fmt.Printf("\n")
  488. p.buf = obuf
  489. p.index = index
  490. }
  491. // SetDefaults sets unset protocol buffer fields to their default values.
  492. // It only modifies fields that are both unset and have defined defaults.
  493. // It recursively sets default values in any non-nil sub-messages.
  494. func SetDefaults(pb Message) {
  495. setDefaults(reflect.ValueOf(pb), true, false)
  496. }
  497. // v is a pointer to a struct.
  498. func setDefaults(v reflect.Value, recur, zeros bool) {
  499. v = v.Elem()
  500. defaultMu.RLock()
  501. dm, ok := defaults[v.Type()]
  502. defaultMu.RUnlock()
  503. if !ok {
  504. dm = buildDefaultMessage(v.Type())
  505. defaultMu.Lock()
  506. defaults[v.Type()] = dm
  507. defaultMu.Unlock()
  508. }
  509. for _, sf := range dm.scalars {
  510. f := v.Field(sf.index)
  511. if !f.IsNil() {
  512. // field already set
  513. continue
  514. }
  515. dv := sf.value
  516. if dv == nil && !zeros {
  517. // no explicit default, and don't want to set zeros
  518. continue
  519. }
  520. fptr := f.Addr().Interface() // **T
  521. // TODO: Consider batching the allocations we do here.
  522. switch sf.kind {
  523. case reflect.Bool:
  524. b := new(bool)
  525. if dv != nil {
  526. *b = dv.(bool)
  527. }
  528. *(fptr.(**bool)) = b
  529. case reflect.Float32:
  530. f := new(float32)
  531. if dv != nil {
  532. *f = dv.(float32)
  533. }
  534. *(fptr.(**float32)) = f
  535. case reflect.Float64:
  536. f := new(float64)
  537. if dv != nil {
  538. *f = dv.(float64)
  539. }
  540. *(fptr.(**float64)) = f
  541. case reflect.Int32:
  542. // might be an enum
  543. if ft := f.Type(); ft != int32PtrType {
  544. // enum
  545. f.Set(reflect.New(ft.Elem()))
  546. if dv != nil {
  547. f.Elem().SetInt(int64(dv.(int32)))
  548. }
  549. } else {
  550. // int32 field
  551. i := new(int32)
  552. if dv != nil {
  553. *i = dv.(int32)
  554. }
  555. *(fptr.(**int32)) = i
  556. }
  557. case reflect.Int64:
  558. i := new(int64)
  559. if dv != nil {
  560. *i = dv.(int64)
  561. }
  562. *(fptr.(**int64)) = i
  563. case reflect.String:
  564. s := new(string)
  565. if dv != nil {
  566. *s = dv.(string)
  567. }
  568. *(fptr.(**string)) = s
  569. case reflect.Uint8:
  570. // exceptional case: []byte
  571. var b []byte
  572. if dv != nil {
  573. db := dv.([]byte)
  574. b = make([]byte, len(db))
  575. copy(b, db)
  576. } else {
  577. b = []byte{}
  578. }
  579. *(fptr.(*[]byte)) = b
  580. case reflect.Uint32:
  581. u := new(uint32)
  582. if dv != nil {
  583. *u = dv.(uint32)
  584. }
  585. *(fptr.(**uint32)) = u
  586. case reflect.Uint64:
  587. u := new(uint64)
  588. if dv != nil {
  589. *u = dv.(uint64)
  590. }
  591. *(fptr.(**uint64)) = u
  592. default:
  593. log.Printf("proto: can't set default for field %v (sf.kind=%v)", f, sf.kind)
  594. }
  595. }
  596. for _, ni := range dm.nested {
  597. f := v.Field(ni)
  598. // f is *T or []*T or map[T]*T
  599. switch f.Kind() {
  600. case reflect.Ptr:
  601. if f.IsNil() {
  602. continue
  603. }
  604. setDefaults(f, recur, zeros)
  605. case reflect.Slice:
  606. for i := 0; i < f.Len(); i++ {
  607. e := f.Index(i)
  608. if e.IsNil() {
  609. continue
  610. }
  611. setDefaults(e, recur, zeros)
  612. }
  613. case reflect.Map:
  614. for _, k := range f.MapKeys() {
  615. e := f.MapIndex(k)
  616. if e.IsNil() {
  617. continue
  618. }
  619. setDefaults(e, recur, zeros)
  620. }
  621. }
  622. }
  623. }
  624. var (
  625. // defaults maps a protocol buffer struct type to a slice of the fields,
  626. // with its scalar fields set to their proto-declared non-zero default values.
  627. defaultMu sync.RWMutex
  628. defaults = make(map[reflect.Type]defaultMessage)
  629. int32PtrType = reflect.TypeOf((*int32)(nil))
  630. )
  631. // defaultMessage represents information about the default values of a message.
  632. type defaultMessage struct {
  633. scalars []scalarField
  634. nested []int // struct field index of nested messages
  635. }
  636. type scalarField struct {
  637. index int // struct field index
  638. kind reflect.Kind // element type (the T in *T or []T)
  639. value interface{} // the proto-declared default value, or nil
  640. }
  641. // t is a struct type.
  642. func buildDefaultMessage(t reflect.Type) (dm defaultMessage) {
  643. sprop := GetProperties(t)
  644. for _, prop := range sprop.Prop {
  645. fi, ok := sprop.decoderTags.get(prop.Tag)
  646. if !ok {
  647. // XXX_unrecognized
  648. continue
  649. }
  650. ft := t.Field(fi).Type
  651. sf, nested, err := fieldDefault(ft, prop)
  652. switch {
  653. case err != nil:
  654. log.Print(err)
  655. case nested:
  656. dm.nested = append(dm.nested, fi)
  657. case sf != nil:
  658. sf.index = fi
  659. dm.scalars = append(dm.scalars, *sf)
  660. }
  661. }
  662. return dm
  663. }
  664. // fieldDefault returns the scalarField for field type ft.
  665. // sf will be nil if the field can not have a default.
  666. // nestedMessage will be true if this is a nested message.
  667. // Note that sf.index is not set on return.
  668. func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMessage bool, err error) {
  669. var canHaveDefault bool
  670. switch ft.Kind() {
  671. case reflect.Ptr:
  672. if ft.Elem().Kind() == reflect.Struct {
  673. nestedMessage = true
  674. } else {
  675. canHaveDefault = true // proto2 scalar field
  676. }
  677. case reflect.Slice:
  678. switch ft.Elem().Kind() {
  679. case reflect.Ptr:
  680. nestedMessage = true // repeated message
  681. case reflect.Uint8:
  682. canHaveDefault = true // bytes field
  683. }
  684. case reflect.Map:
  685. if ft.Elem().Kind() == reflect.Ptr {
  686. nestedMessage = true // map with message values
  687. }
  688. }
  689. if !canHaveDefault {
  690. if nestedMessage {
  691. return nil, true, nil
  692. }
  693. return nil, false, nil
  694. }
  695. // We now know that ft is a pointer or slice.
  696. sf = &scalarField{kind: ft.Elem().Kind()}
  697. // scalar fields without defaults
  698. if !prop.HasDefault {
  699. return sf, false, nil
  700. }
  701. // a scalar field: either *T or []byte
  702. switch ft.Elem().Kind() {
  703. case reflect.Bool:
  704. x, err := strconv.ParseBool(prop.Default)
  705. if err != nil {
  706. return nil, false, fmt.Errorf("proto: bad default bool %q: %v", prop.Default, err)
  707. }
  708. sf.value = x
  709. case reflect.Float32:
  710. x, err := strconv.ParseFloat(prop.Default, 32)
  711. if err != nil {
  712. return nil, false, fmt.Errorf("proto: bad default float32 %q: %v", prop.Default, err)
  713. }
  714. sf.value = float32(x)
  715. case reflect.Float64:
  716. x, err := strconv.ParseFloat(prop.Default, 64)
  717. if err != nil {
  718. return nil, false, fmt.Errorf("proto: bad default float64 %q: %v", prop.Default, err)
  719. }
  720. sf.value = x
  721. case reflect.Int32:
  722. x, err := strconv.ParseInt(prop.Default, 10, 32)
  723. if err != nil {
  724. return nil, false, fmt.Errorf("proto: bad default int32 %q: %v", prop.Default, err)
  725. }
  726. sf.value = int32(x)
  727. case reflect.Int64:
  728. x, err := strconv.ParseInt(prop.Default, 10, 64)
  729. if err != nil {
  730. return nil, false, fmt.Errorf("proto: bad default int64 %q: %v", prop.Default, err)
  731. }
  732. sf.value = x
  733. case reflect.String:
  734. sf.value = prop.Default
  735. case reflect.Uint8:
  736. // []byte (not *uint8)
  737. sf.value = []byte(prop.Default)
  738. case reflect.Uint32:
  739. x, err := strconv.ParseUint(prop.Default, 10, 32)
  740. if err != nil {
  741. return nil, false, fmt.Errorf("proto: bad default uint32 %q: %v", prop.Default, err)
  742. }
  743. sf.value = uint32(x)
  744. case reflect.Uint64:
  745. x, err := strconv.ParseUint(prop.Default, 10, 64)
  746. if err != nil {
  747. return nil, false, fmt.Errorf("proto: bad default uint64 %q: %v", prop.Default, err)
  748. }
  749. sf.value = x
  750. default:
  751. return nil, false, fmt.Errorf("proto: unhandled def kind %v", ft.Elem().Kind())
  752. }
  753. return sf, false, nil
  754. }
  755. // mapKeys returns a sort.Interface to be used for sorting the map keys.
  756. // Map fields may have key types of non-float scalars, strings and enums.
  757. func mapKeys(vs []reflect.Value) sort.Interface {
  758. s := mapKeySorter{vs: vs}
  759. // Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps.
  760. if len(vs) == 0 {
  761. return s
  762. }
  763. switch vs[0].Kind() {
  764. case reflect.Int32, reflect.Int64:
  765. s.less = func(a, b reflect.Value) bool { return a.Int() < b.Int() }
  766. case reflect.Uint32, reflect.Uint64:
  767. s.less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() }
  768. case reflect.Bool:
  769. s.less = func(a, b reflect.Value) bool { return !a.Bool() && b.Bool() } // false < true
  770. case reflect.String:
  771. s.less = func(a, b reflect.Value) bool { return a.String() < b.String() }
  772. default:
  773. panic(fmt.Sprintf("unsupported map key type: %v", vs[0].Kind()))
  774. }
  775. return s
  776. }
  777. type mapKeySorter struct {
  778. vs []reflect.Value
  779. less func(a, b reflect.Value) bool
  780. }
  781. func (s mapKeySorter) Len() int { return len(s.vs) }
  782. func (s mapKeySorter) Swap(i, j int) { s.vs[i], s.vs[j] = s.vs[j], s.vs[i] }
  783. func (s mapKeySorter) Less(i, j int) bool {
  784. return s.less(s.vs[i], s.vs[j])
  785. }
  786. // isProto3Zero reports whether v is a zero proto3 value.
  787. func isProto3Zero(v reflect.Value) bool {
  788. switch v.Kind() {
  789. case reflect.Bool:
  790. return !v.Bool()
  791. case reflect.Int32, reflect.Int64:
  792. return v.Int() == 0
  793. case reflect.Uint32, reflect.Uint64:
  794. return v.Uint() == 0
  795. case reflect.Float32, reflect.Float64:
  796. return v.Float() == 0
  797. case reflect.String:
  798. return v.String() == ""
  799. }
  800. return false
  801. }
  802. // ProtoPackageIsVersion2 is referenced from generated protocol buffer files
  803. // to assert that that code is compatible with this version of the proto package.
  804. const ProtoPackageIsVersion2 = true
  805. // ProtoPackageIsVersion1 is referenced from generated protocol buffer files
  806. // to assert that that code is compatible with this version of the proto package.
  807. const ProtoPackageIsVersion1 = true
  808. // InternalMessageInfo is a type used internally by generated .pb.go files.
  809. // This type is not intended to be used by non-generated code.
  810. // This type is not subject to any compatibility guarantee.
  811. type InternalMessageInfo struct {
  812. marshal *marshalInfo
  813. unmarshal *unmarshalInfo
  814. merge *mergeInfo
  815. discard *discardInfo
  816. }