/* * * Copyright 2014 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ package transport import ( "io" "math" "net" "strconv" "strings" "sync" "sync/atomic" "time" "golang.org/x/net/context" "golang.org/x/net/http2" "golang.org/x/net/http2/hpack" "google.golang.org/grpc/codes" "google.golang.org/grpc/credentials" "google.golang.org/grpc/internal/channelz" "google.golang.org/grpc/keepalive" "google.golang.org/grpc/metadata" "google.golang.org/grpc/peer" "google.golang.org/grpc/stats" "google.golang.org/grpc/status" ) // http2Client implements the ClientTransport interface with HTTP2. type http2Client struct { ctx context.Context cancel context.CancelFunc ctxDone <-chan struct{} // Cache the ctx.Done() chan. userAgent string md interface{} conn net.Conn // underlying communication channel loopy *loopyWriter remoteAddr net.Addr localAddr net.Addr authInfo credentials.AuthInfo // auth info about the connection readerDone chan struct{} // sync point to enable testing. writerDone chan struct{} // sync point to enable testing. // goAway is closed to notify the upper layer (i.e., addrConn.transportMonitor) // that the server sent GoAway on this transport. goAway chan struct{} // awakenKeepalive is used to wake up keepalive when after it has gone dormant. awakenKeepalive chan struct{} framer *framer // controlBuf delivers all the control related tasks (e.g., window // updates, reset streams, and various settings) to the controller. controlBuf *controlBuffer fc *trInFlow // The scheme used: https if TLS is on, http otherwise. scheme string isSecure bool creds []credentials.PerRPCCredentials // Boolean to keep track of reading activity on transport. // 1 is true and 0 is false. activity uint32 // Accessed atomically. kp keepalive.ClientParameters keepaliveEnabled bool statsHandler stats.Handler initialWindowSize int32 // configured by peer through SETTINGS_MAX_HEADER_LIST_SIZE maxSendHeaderListSize *uint32 bdpEst *bdpEstimator // onSuccess is a callback that client transport calls upon // receiving server preface to signal that a succefull HTTP2 // connection was established. onSuccess func() maxConcurrentStreams uint32 streamQuota int64 streamsQuotaAvailable chan struct{} waitingStreams uint32 nextID uint32 mu sync.Mutex // guard the following variables state transportState activeStreams map[uint32]*Stream // prevGoAway ID records the Last-Stream-ID in the previous GOAway frame. prevGoAwayID uint32 // goAwayReason records the http2.ErrCode and debug data received with the // GoAway frame. goAwayReason GoAwayReason // Fields below are for channelz metric collection. channelzID int64 // channelz unique identification number czmu sync.RWMutex kpCount int64 // The number of streams that have started, including already finished ones. streamsStarted int64 // The number of streams that have ended successfully by receiving EoS bit set // frame from server. streamsSucceeded int64 streamsFailed int64 lastStreamCreated time.Time msgSent int64 msgRecv int64 lastMsgSent time.Time lastMsgRecv time.Time } func dial(ctx context.Context, fn func(context.Context, string) (net.Conn, error), addr string) (net.Conn, error) { if fn != nil { return fn(ctx, addr) } return dialContext(ctx, "tcp", addr) } func isTemporary(err error) bool { switch err := err.(type) { case interface { Temporary() bool }: return err.Temporary() case interface { Timeout() bool }: // Timeouts may be resolved upon retry, and are thus treated as // temporary. return err.Timeout() } return true } // newHTTP2Client constructs a connected ClientTransport to addr based on HTTP2 // and starts to receive messages on it. Non-nil error returns if construction // fails. func newHTTP2Client(connectCtx, ctx context.Context, addr TargetInfo, opts ConnectOptions, onSuccess func()) (_ ClientTransport, err error) { scheme := "http" ctx, cancel := context.WithCancel(ctx) defer func() { if err != nil { cancel() } }() conn, err := dial(connectCtx, opts.Dialer, addr.Addr) if err != nil { if opts.FailOnNonTempDialError { return nil, connectionErrorf(isTemporary(err), err, "transport: error while dialing: %v", err) } return nil, connectionErrorf(true, err, "transport: Error while dialing %v", err) } // Any further errors will close the underlying connection defer func(conn net.Conn) { if err != nil { conn.Close() } }(conn) var ( isSecure bool authInfo credentials.AuthInfo ) if creds := opts.TransportCredentials; creds != nil { scheme = "https" conn, authInfo, err = creds.ClientHandshake(connectCtx, addr.Authority, conn) if err != nil { return nil, connectionErrorf(isTemporary(err), err, "transport: authentication handshake failed: %v", err) } isSecure = true } kp := opts.KeepaliveParams // Validate keepalive parameters. if kp.Time == 0 { kp.Time = defaultClientKeepaliveTime } if kp.Timeout == 0 { kp.Timeout = defaultClientKeepaliveTimeout } dynamicWindow := true icwz := int32(initialWindowSize) if opts.InitialConnWindowSize >= defaultWindowSize { icwz = opts.InitialConnWindowSize dynamicWindow = false } writeBufSize := opts.WriteBufferSize readBufSize := opts.ReadBufferSize maxHeaderListSize := defaultClientMaxHeaderListSize if opts.MaxHeaderListSize != nil { maxHeaderListSize = *opts.MaxHeaderListSize } t := &http2Client{ ctx: ctx, ctxDone: ctx.Done(), // Cache Done chan. cancel: cancel, userAgent: opts.UserAgent, md: addr.Metadata, conn: conn, remoteAddr: conn.RemoteAddr(), localAddr: conn.LocalAddr(), authInfo: authInfo, readerDone: make(chan struct{}), writerDone: make(chan struct{}), goAway: make(chan struct{}), awakenKeepalive: make(chan struct{}, 1), framer: newFramer(conn, writeBufSize, readBufSize, maxHeaderListSize), fc: &trInFlow{limit: uint32(icwz)}, scheme: scheme, activeStreams: make(map[uint32]*Stream), isSecure: isSecure, creds: opts.PerRPCCredentials, kp: kp, statsHandler: opts.StatsHandler, initialWindowSize: initialWindowSize, onSuccess: onSuccess, nextID: 1, maxConcurrentStreams: defaultMaxStreamsClient, streamQuota: defaultMaxStreamsClient, streamsQuotaAvailable: make(chan struct{}, 1), } t.controlBuf = newControlBuffer(t.ctxDone) if opts.InitialWindowSize >= defaultWindowSize { t.initialWindowSize = opts.InitialWindowSize dynamicWindow = false } if dynamicWindow { t.bdpEst = &bdpEstimator{ bdp: initialWindowSize, updateFlowControl: t.updateFlowControl, } } // Make sure awakenKeepalive can't be written upon. // keepalive routine will make it writable, if need be. t.awakenKeepalive <- struct{}{} if t.statsHandler != nil { t.ctx = t.statsHandler.TagConn(t.ctx, &stats.ConnTagInfo{ RemoteAddr: t.remoteAddr, LocalAddr: t.localAddr, }) connBegin := &stats.ConnBegin{ Client: true, } t.statsHandler.HandleConn(t.ctx, connBegin) } if channelz.IsOn() { t.channelzID = channelz.RegisterNormalSocket(t, opts.ChannelzParentID, "") } if t.kp.Time != infinity { t.keepaliveEnabled = true go t.keepalive() } // Start the reader goroutine for incoming message. Each transport has // a dedicated goroutine which reads HTTP2 frame from network. Then it // dispatches the frame to the corresponding stream entity. go t.reader() // Send connection preface to server. n, err := t.conn.Write(clientPreface) if err != nil { t.Close() return nil, connectionErrorf(true, err, "transport: failed to write client preface: %v", err) } if n != len(clientPreface) { t.Close() return nil, connectionErrorf(true, err, "transport: preface mismatch, wrote %d bytes; want %d", n, len(clientPreface)) } var ss []http2.Setting if t.initialWindowSize != defaultWindowSize { ss = append(ss, http2.Setting{ ID: http2.SettingInitialWindowSize, Val: uint32(t.initialWindowSize), }) } if opts.MaxHeaderListSize != nil { ss = append(ss, http2.Setting{ ID: http2.SettingMaxHeaderListSize, Val: *opts.MaxHeaderListSize, }) } err = t.framer.fr.WriteSettings(ss...) if err != nil { t.Close() return nil, connectionErrorf(true, err, "transport: failed to write initial settings frame: %v", err) } // Adjust the connection flow control window if needed. if delta := uint32(icwz - defaultWindowSize); delta > 0 { if err := t.framer.fr.WriteWindowUpdate(0, delta); err != nil { t.Close() return nil, connectionErrorf(true, err, "transport: failed to write window update: %v", err) } } t.framer.writer.Flush() go func() { t.loopy = newLoopyWriter(clientSide, t.framer, t.controlBuf, t.bdpEst) err := t.loopy.run() if err != nil { errorf("transport: loopyWriter.run returning. Err: %v", err) } // If it's a connection error, let reader goroutine handle it // since there might be data in the buffers. if _, ok := err.(net.Error); !ok { t.conn.Close() } close(t.writerDone) }() return t, nil } func (t *http2Client) newStream(ctx context.Context, callHdr *CallHdr) *Stream { // TODO(zhaoq): Handle uint32 overflow of Stream.id. s := &Stream{ done: make(chan struct{}), method: callHdr.Method, sendCompress: callHdr.SendCompress, buf: newRecvBuffer(), headerChan: make(chan struct{}), contentSubtype: callHdr.ContentSubtype, } s.wq = newWriteQuota(defaultWriteQuota, s.done) s.requestRead = func(n int) { t.adjustWindow(s, uint32(n)) } // The client side stream context should have exactly the same life cycle with the user provided context. // That means, s.ctx should be read-only. And s.ctx is done iff ctx is done. // So we use the original context here instead of creating a copy. s.ctx = ctx s.trReader = &transportReader{ reader: &recvBufferReader{ ctx: s.ctx, ctxDone: s.ctx.Done(), recv: s.buf, }, windowHandler: func(n int) { t.updateWindow(s, uint32(n)) }, } return s } func (t *http2Client) getPeer() *peer.Peer { pr := &peer.Peer{ Addr: t.remoteAddr, } // Attach Auth info if there is any. if t.authInfo != nil { pr.AuthInfo = t.authInfo } return pr } func (t *http2Client) createHeaderFields(ctx context.Context, callHdr *CallHdr) ([]hpack.HeaderField, error) { aud := t.createAudience(callHdr) authData, err := t.getTrAuthData(ctx, aud) if err != nil { return nil, err } callAuthData, err := t.getCallAuthData(ctx, aud, callHdr) if err != nil { return nil, err } // TODO(mmukhi): Benchmark if the performance gets better if count the metadata and other header fields // first and create a slice of that exact size. // Make the slice of certain predictable size to reduce allocations made by append. hfLen := 7 // :method, :scheme, :path, :authority, content-type, user-agent, te hfLen += len(authData) + len(callAuthData) headerFields := make([]hpack.HeaderField, 0, hfLen) headerFields = append(headerFields, hpack.HeaderField{Name: ":method", Value: "POST"}) headerFields = append(headerFields, hpack.HeaderField{Name: ":scheme", Value: t.scheme}) headerFields = append(headerFields, hpack.HeaderField{Name: ":path", Value: callHdr.Method}) headerFields = append(headerFields, hpack.HeaderField{Name: ":authority", Value: callHdr.Host}) headerFields = append(headerFields, hpack.HeaderField{Name: "content-type", Value: contentType(callHdr.ContentSubtype)}) headerFields = append(headerFields, hpack.HeaderField{Name: "user-agent", Value: t.userAgent}) headerFields = append(headerFields, hpack.HeaderField{Name: "te", Value: "trailers"}) if callHdr.PreviousAttempts > 0 { headerFields = append(headerFields, hpack.HeaderField{Name: "grpc-previous-rpc-attempts", Value: strconv.Itoa(callHdr.PreviousAttempts)}) } if callHdr.SendCompress != "" { headerFields = append(headerFields, hpack.HeaderField{Name: "grpc-encoding", Value: callHdr.SendCompress}) } if dl, ok := ctx.Deadline(); ok { // Send out timeout regardless its value. The server can detect timeout context by itself. // TODO(mmukhi): Perhaps this field should be updated when actually writing out to the wire. timeout := dl.Sub(time.Now()) headerFields = append(headerFields, hpack.HeaderField{Name: "grpc-timeout", Value: encodeTimeout(timeout)}) } for k, v := range authData { headerFields = append(headerFields, hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)}) } for k, v := range callAuthData { headerFields = append(headerFields, hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)}) } if b := stats.OutgoingTags(ctx); b != nil { headerFields = append(headerFields, hpack.HeaderField{Name: "grpc-tags-bin", Value: encodeBinHeader(b)}) } if b := stats.OutgoingTrace(ctx); b != nil { headerFields = append(headerFields, hpack.HeaderField{Name: "grpc-trace-bin", Value: encodeBinHeader(b)}) } if md, added, ok := metadata.FromOutgoingContextRaw(ctx); ok { var k string for _, vv := range added { for i, v := range vv { if i%2 == 0 { k = v continue } // HTTP doesn't allow you to set pseudoheaders after non pseudoheaders were set. if isReservedHeader(k) { continue } headerFields = append(headerFields, hpack.HeaderField{Name: strings.ToLower(k), Value: encodeMetadataHeader(k, v)}) } } for k, vv := range md { // HTTP doesn't allow you to set pseudoheaders after non pseudoheaders were set. if isReservedHeader(k) { continue } for _, v := range vv { headerFields = append(headerFields, hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)}) } } } if md, ok := t.md.(*metadata.MD); ok { for k, vv := range *md { if isReservedHeader(k) { continue } for _, v := range vv { headerFields = append(headerFields, hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)}) } } } return headerFields, nil } func (t *http2Client) createAudience(callHdr *CallHdr) string { // Create an audience string only if needed. if len(t.creds) == 0 && callHdr.Creds == nil { return "" } // Construct URI required to get auth request metadata. // Omit port if it is the default one. host := strings.TrimSuffix(callHdr.Host, ":443") pos := strings.LastIndex(callHdr.Method, "/") if pos == -1 { pos = len(callHdr.Method) } return "https://" + host + callHdr.Method[:pos] } func (t *http2Client) getTrAuthData(ctx context.Context, audience string) (map[string]string, error) { authData := map[string]string{} for _, c := range t.creds { data, err := c.GetRequestMetadata(ctx, audience) if err != nil { if _, ok := status.FromError(err); ok { return nil, err } return nil, streamErrorf(codes.Unauthenticated, "transport: %v", err) } for k, v := range data { // Capital header names are illegal in HTTP/2. k = strings.ToLower(k) authData[k] = v } } return authData, nil } func (t *http2Client) getCallAuthData(ctx context.Context, audience string, callHdr *CallHdr) (map[string]string, error) { callAuthData := map[string]string{} // Check if credentials.PerRPCCredentials were provided via call options. // Note: if these credentials are provided both via dial options and call // options, then both sets of credentials will be applied. if callCreds := callHdr.Creds; callCreds != nil { if !t.isSecure && callCreds.RequireTransportSecurity() { return nil, streamErrorf(codes.Unauthenticated, "transport: cannot send secure credentials on an insecure connection") } data, err := callCreds.GetRequestMetadata(ctx, audience) if err != nil { return nil, streamErrorf(codes.Internal, "transport: %v", err) } for k, v := range data { // Capital header names are illegal in HTTP/2 k = strings.ToLower(k) callAuthData[k] = v } } return callAuthData, nil } // NewStream creates a stream and registers it into the transport as "active" // streams. func (t *http2Client) NewStream(ctx context.Context, callHdr *CallHdr) (_ *Stream, err error) { ctx = peer.NewContext(ctx, t.getPeer()) headerFields, err := t.createHeaderFields(ctx, callHdr) if err != nil { return nil, err } s := t.newStream(ctx, callHdr) cleanup := func(err error) { if s.swapState(streamDone) == streamDone { // If it was already done, return. return } // The stream was unprocessed by the server. atomic.StoreUint32(&s.unprocessed, 1) s.write(recvMsg{err: err}) close(s.done) // If headerChan isn't closed, then close it. if atomic.SwapUint32(&s.headerDone, 1) == 0 { close(s.headerChan) } } hdr := &headerFrame{ hf: headerFields, endStream: false, initStream: func(id uint32) (bool, error) { t.mu.Lock() if state := t.state; state != reachable { t.mu.Unlock() // Do a quick cleanup. err := error(errStreamDrain) if state == closing { err = ErrConnClosing } cleanup(err) return false, err } t.activeStreams[id] = s if channelz.IsOn() { t.czmu.Lock() t.streamsStarted++ t.lastStreamCreated = time.Now() t.czmu.Unlock() } var sendPing bool // If the number of active streams change from 0 to 1, then check if keepalive // has gone dormant. If so, wake it up. if len(t.activeStreams) == 1 && t.keepaliveEnabled { select { case t.awakenKeepalive <- struct{}{}: sendPing = true // Fill the awakenKeepalive channel again as this channel must be // kept non-writable except at the point that the keepalive() // goroutine is waiting either to be awaken or shutdown. t.awakenKeepalive <- struct{}{} default: } } t.mu.Unlock() return sendPing, nil }, onOrphaned: cleanup, wq: s.wq, } firstTry := true var ch chan struct{} checkForStreamQuota := func(it interface{}) bool { if t.streamQuota <= 0 { // Can go negative if server decreases it. if firstTry { t.waitingStreams++ } ch = t.streamsQuotaAvailable return false } if !firstTry { t.waitingStreams-- } t.streamQuota-- h := it.(*headerFrame) h.streamID = t.nextID t.nextID += 2 s.id = h.streamID s.fc = &inFlow{limit: uint32(t.initialWindowSize)} if t.streamQuota > 0 && t.waitingStreams > 0 { select { case t.streamsQuotaAvailable <- struct{}{}: default: } } return true } var hdrListSizeErr error checkForHeaderListSize := func(it interface{}) bool { if t.maxSendHeaderListSize == nil { return true } hdrFrame := it.(*headerFrame) var sz int64 for _, f := range hdrFrame.hf { if sz += int64(f.Size()); sz > int64(*t.maxSendHeaderListSize) { hdrListSizeErr = streamErrorf(codes.Internal, "header list size to send violates the maximum size (%d bytes) set by server", *t.maxSendHeaderListSize) return false } } return true } for { success, err := t.controlBuf.executeAndPut(func(it interface{}) bool { if !checkForStreamQuota(it) { return false } if !checkForHeaderListSize(it) { return false } return true }, hdr) if err != nil { return nil, err } if success { break } if hdrListSizeErr != nil { return nil, hdrListSizeErr } firstTry = false select { case <-ch: case <-s.ctx.Done(): return nil, ContextErr(s.ctx.Err()) case <-t.goAway: return nil, errStreamDrain case <-t.ctx.Done(): return nil, ErrConnClosing } } if t.statsHandler != nil { outHeader := &stats.OutHeader{ Client: true, FullMethod: callHdr.Method, RemoteAddr: t.remoteAddr, LocalAddr: t.localAddr, Compression: callHdr.SendCompress, } t.statsHandler.HandleRPC(s.ctx, outHeader) } return s, nil } // CloseStream clears the footprint of a stream when the stream is not needed any more. // This must not be executed in reader's goroutine. func (t *http2Client) CloseStream(s *Stream, err error) { var ( rst bool rstCode http2.ErrCode ) if err != nil { rst = true rstCode = http2.ErrCodeCancel } t.closeStream(s, err, rst, rstCode, status.Convert(err), nil, false) } func (t *http2Client) closeStream(s *Stream, err error, rst bool, rstCode http2.ErrCode, st *status.Status, mdata map[string][]string, eosReceived bool) { // Set stream status to done. if s.swapState(streamDone) == streamDone { // If it was already done, return. return } // status and trailers can be updated here without any synchronization because the stream goroutine will // only read it after it sees an io.EOF error from read or write and we'll write those errors // only after updating this. s.status = st if len(mdata) > 0 { s.trailer = mdata } if err != nil { // This will unblock reads eventually. s.write(recvMsg{err: err}) } // This will unblock write. close(s.done) // If headerChan isn't closed, then close it. if atomic.SwapUint32(&s.headerDone, 1) == 0 { s.noHeaders = true close(s.headerChan) } cleanup := &cleanupStream{ streamID: s.id, onWrite: func() { t.mu.Lock() if t.activeStreams != nil { delete(t.activeStreams, s.id) } t.mu.Unlock() if channelz.IsOn() { t.czmu.Lock() if eosReceived { t.streamsSucceeded++ } else { t.streamsFailed++ } t.czmu.Unlock() } }, rst: rst, rstCode: rstCode, } addBackStreamQuota := func(interface{}) bool { t.streamQuota++ if t.streamQuota > 0 && t.waitingStreams > 0 { select { case t.streamsQuotaAvailable <- struct{}{}: default: } } return true } t.controlBuf.executeAndPut(addBackStreamQuota, cleanup) } // Close kicks off the shutdown process of the transport. This should be called // only once on a transport. Once it is called, the transport should not be // accessed any more. func (t *http2Client) Close() error { t.mu.Lock() // Make sure we only Close once. if t.state == closing { t.mu.Unlock() return nil } t.state = closing streams := t.activeStreams t.activeStreams = nil t.mu.Unlock() t.controlBuf.finish() t.cancel() err := t.conn.Close() if channelz.IsOn() { channelz.RemoveEntry(t.channelzID) } // Notify all active streams. for _, s := range streams { t.closeStream(s, ErrConnClosing, false, http2.ErrCodeNo, status.New(codes.Unavailable, ErrConnClosing.Desc), nil, false) } if t.statsHandler != nil { connEnd := &stats.ConnEnd{ Client: true, } t.statsHandler.HandleConn(t.ctx, connEnd) } return err } // GracefulClose sets the state to draining, which prevents new streams from // being created and causes the transport to be closed when the last active // stream is closed. If there are no active streams, the transport is closed // immediately. This does nothing if the transport is already draining or // closing. func (t *http2Client) GracefulClose() error { t.mu.Lock() // Make sure we move to draining only from active. if t.state == draining || t.state == closing { t.mu.Unlock() return nil } t.state = draining active := len(t.activeStreams) t.mu.Unlock() if active == 0 { return t.Close() } t.controlBuf.put(&incomingGoAway{}) return nil } // Write formats the data into HTTP2 data frame(s) and sends it out. The caller // should proceed only if Write returns nil. func (t *http2Client) Write(s *Stream, hdr []byte, data []byte, opts *Options) error { if opts.Last { // If it's the last message, update stream state. if !s.compareAndSwapState(streamActive, streamWriteDone) { return errStreamDone } } else if s.getState() != streamActive { return errStreamDone } df := &dataFrame{ streamID: s.id, endStream: opts.Last, } if hdr != nil || data != nil { // If it's not an empty data frame. // Add some data to grpc message header so that we can equally // distribute bytes across frames. emptyLen := http2MaxFrameLen - len(hdr) if emptyLen > len(data) { emptyLen = len(data) } hdr = append(hdr, data[:emptyLen]...) data = data[emptyLen:] df.h, df.d = hdr, data // TODO(mmukhi): The above logic in this if can be moved to loopyWriter's data handler. if err := s.wq.get(int32(len(hdr) + len(data))); err != nil { return err } } return t.controlBuf.put(df) } func (t *http2Client) getStream(f http2.Frame) (*Stream, bool) { t.mu.Lock() defer t.mu.Unlock() s, ok := t.activeStreams[f.Header().StreamID] return s, ok } // adjustWindow sends out extra window update over the initial window size // of stream if the application is requesting data larger in size than // the window. func (t *http2Client) adjustWindow(s *Stream, n uint32) { if w := s.fc.maybeAdjust(n); w > 0 { t.controlBuf.put(&outgoingWindowUpdate{streamID: s.id, increment: w}) } } // updateWindow adjusts the inbound quota for the stream. // Window updates will be sent out when the cumulative quota // exceeds the corresponding threshold. func (t *http2Client) updateWindow(s *Stream, n uint32) { if w := s.fc.onRead(n); w > 0 { t.controlBuf.put(&outgoingWindowUpdate{streamID: s.id, increment: w}) } } // updateFlowControl updates the incoming flow control windows // for the transport and the stream based on the current bdp // estimation. func (t *http2Client) updateFlowControl(n uint32) { t.mu.Lock() for _, s := range t.activeStreams { s.fc.newLimit(n) } t.mu.Unlock() updateIWS := func(interface{}) bool { t.initialWindowSize = int32(n) return true } t.controlBuf.executeAndPut(updateIWS, &outgoingWindowUpdate{streamID: 0, increment: t.fc.newLimit(n)}) t.controlBuf.put(&outgoingSettings{ ss: []http2.Setting{ { ID: http2.SettingInitialWindowSize, Val: n, }, }, }) } func (t *http2Client) handleData(f *http2.DataFrame) { size := f.Header().Length var sendBDPPing bool if t.bdpEst != nil { sendBDPPing = t.bdpEst.add(size) } // Decouple connection's flow control from application's read. // An update on connection's flow control should not depend on // whether user application has read the data or not. Such a // restriction is already imposed on the stream's flow control, // and therefore the sender will be blocked anyways. // Decoupling the connection flow control will prevent other // active(fast) streams from starving in presence of slow or // inactive streams. // if w := t.fc.onData(size); w > 0 { t.controlBuf.put(&outgoingWindowUpdate{ streamID: 0, increment: w, }) } if sendBDPPing { // Avoid excessive ping detection (e.g. in an L7 proxy) // by sending a window update prior to the BDP ping. if w := t.fc.reset(); w > 0 { t.controlBuf.put(&outgoingWindowUpdate{ streamID: 0, increment: w, }) } t.controlBuf.put(bdpPing) } // Select the right stream to dispatch. s, ok := t.getStream(f) if !ok { return } if size > 0 { if err := s.fc.onData(size); err != nil { t.closeStream(s, io.EOF, true, http2.ErrCodeFlowControl, status.New(codes.Internal, err.Error()), nil, false) return } if f.Header().Flags.Has(http2.FlagDataPadded) { if w := s.fc.onRead(size - uint32(len(f.Data()))); w > 0 { t.controlBuf.put(&outgoingWindowUpdate{s.id, w}) } } // TODO(bradfitz, zhaoq): A copy is required here because there is no // guarantee f.Data() is consumed before the arrival of next frame. // Can this copy be eliminated? if len(f.Data()) > 0 { data := make([]byte, len(f.Data())) copy(data, f.Data()) s.write(recvMsg{data: data}) } } // The server has closed the stream without sending trailers. Record that // the read direction is closed, and set the status appropriately. if f.FrameHeader.Flags.Has(http2.FlagDataEndStream) { t.closeStream(s, io.EOF, false, http2.ErrCodeNo, status.New(codes.Internal, "server closed the stream without sending trailers"), nil, true) } } func (t *http2Client) handleRSTStream(f *http2.RSTStreamFrame) { s, ok := t.getStream(f) if !ok { return } if f.ErrCode == http2.ErrCodeRefusedStream { // The stream was unprocessed by the server. atomic.StoreUint32(&s.unprocessed, 1) } statusCode, ok := http2ErrConvTab[f.ErrCode] if !ok { warningf("transport: http2Client.handleRSTStream found no mapped gRPC status for the received http2 error %v", f.ErrCode) statusCode = codes.Unknown } if statusCode == codes.Canceled { // Our deadline was already exceeded, and that was likely the cause of // this cancelation. Alter the status code accordingly. if d, ok := s.ctx.Deadline(); ok && d.After(time.Now()) { statusCode = codes.DeadlineExceeded } } t.closeStream(s, io.EOF, false, http2.ErrCodeNo, status.Newf(statusCode, "stream terminated by RST_STREAM with error code: %v", f.ErrCode), nil, false) } func (t *http2Client) handleSettings(f *http2.SettingsFrame, isFirst bool) { if f.IsAck() { return } var maxStreams *uint32 var ss []http2.Setting var updateFuncs []func() f.ForeachSetting(func(s http2.Setting) error { switch s.ID { case http2.SettingMaxConcurrentStreams: maxStreams = new(uint32) *maxStreams = s.Val case http2.SettingMaxHeaderListSize: updateFuncs = append(updateFuncs, func() { t.maxSendHeaderListSize = new(uint32) *t.maxSendHeaderListSize = s.Val }) default: ss = append(ss, s) } return nil }) if isFirst && maxStreams == nil { maxStreams = new(uint32) *maxStreams = math.MaxUint32 } sf := &incomingSettings{ ss: ss, } if maxStreams != nil { updateStreamQuota := func() { delta := int64(*maxStreams) - int64(t.maxConcurrentStreams) t.maxConcurrentStreams = *maxStreams t.streamQuota += delta if delta > 0 && t.waitingStreams > 0 { close(t.streamsQuotaAvailable) // wake all of them up. t.streamsQuotaAvailable = make(chan struct{}, 1) } } updateFuncs = append(updateFuncs, updateStreamQuota) } t.controlBuf.executeAndPut(func(interface{}) bool { for _, f := range updateFuncs { f() } return true }, sf) } func (t *http2Client) handlePing(f *http2.PingFrame) { if f.IsAck() { // Maybe it's a BDP ping. if t.bdpEst != nil { t.bdpEst.calculate(f.Data) } return } pingAck := &ping{ack: true} copy(pingAck.data[:], f.Data[:]) t.controlBuf.put(pingAck) } func (t *http2Client) handleGoAway(f *http2.GoAwayFrame) { t.mu.Lock() if t.state == closing { t.mu.Unlock() return } if f.ErrCode == http2.ErrCodeEnhanceYourCalm { infof("Client received GoAway with http2.ErrCodeEnhanceYourCalm.") } id := f.LastStreamID if id > 0 && id%2 != 1 { t.mu.Unlock() t.Close() return } // A client can receive multiple GoAways from the server (see // https://github.com/grpc/grpc-go/issues/1387). The idea is that the first // GoAway will be sent with an ID of MaxInt32 and the second GoAway will be // sent after an RTT delay with the ID of the last stream the server will // process. // // Therefore, when we get the first GoAway we don't necessarily close any // streams. While in case of second GoAway we close all streams created after // the GoAwayId. This way streams that were in-flight while the GoAway from // server was being sent don't get killed. select { case <-t.goAway: // t.goAway has been closed (i.e.,multiple GoAways). // If there are multiple GoAways the first one should always have an ID greater than the following ones. if id > t.prevGoAwayID { t.mu.Unlock() t.Close() return } default: t.setGoAwayReason(f) close(t.goAway) t.state = draining t.controlBuf.put(&incomingGoAway{}) } // All streams with IDs greater than the GoAwayId // and smaller than the previous GoAway ID should be killed. upperLimit := t.prevGoAwayID if upperLimit == 0 { // This is the first GoAway Frame. upperLimit = math.MaxUint32 // Kill all streams after the GoAway ID. } for streamID, stream := range t.activeStreams { if streamID > id && streamID <= upperLimit { // The stream was unprocessed by the server. atomic.StoreUint32(&stream.unprocessed, 1) t.closeStream(stream, errStreamDrain, false, http2.ErrCodeNo, statusGoAway, nil, false) } } t.prevGoAwayID = id active := len(t.activeStreams) t.mu.Unlock() if active == 0 { t.Close() } } // setGoAwayReason sets the value of t.goAwayReason based // on the GoAway frame received. // It expects a lock on transport's mutext to be held by // the caller. func (t *http2Client) setGoAwayReason(f *http2.GoAwayFrame) { t.goAwayReason = GoAwayNoReason switch f.ErrCode { case http2.ErrCodeEnhanceYourCalm: if string(f.DebugData()) == "too_many_pings" { t.goAwayReason = GoAwayTooManyPings } } } func (t *http2Client) GetGoAwayReason() GoAwayReason { t.mu.Lock() defer t.mu.Unlock() return t.goAwayReason } func (t *http2Client) handleWindowUpdate(f *http2.WindowUpdateFrame) { t.controlBuf.put(&incomingWindowUpdate{ streamID: f.Header().StreamID, increment: f.Increment, }) } // operateHeaders takes action on the decoded headers. func (t *http2Client) operateHeaders(frame *http2.MetaHeadersFrame) { s, ok := t.getStream(frame) if !ok { return } atomic.StoreUint32(&s.bytesReceived, 1) var state decodeState if err := state.decodeHeader(frame); err != nil { t.closeStream(s, err, true, http2.ErrCodeProtocol, status.New(codes.Internal, err.Error()), nil, false) // Something wrong. Stops reading even when there is remaining. return } endStream := frame.StreamEnded() var isHeader bool defer func() { if t.statsHandler != nil { if isHeader { inHeader := &stats.InHeader{ Client: true, WireLength: int(frame.Header().Length), } t.statsHandler.HandleRPC(s.ctx, inHeader) } else { inTrailer := &stats.InTrailer{ Client: true, WireLength: int(frame.Header().Length), } t.statsHandler.HandleRPC(s.ctx, inTrailer) } } }() // If headers haven't been received yet. if atomic.SwapUint32(&s.headerDone, 1) == 0 { if !endStream { // Headers frame is not actually a trailers-only frame. isHeader = true // These values can be set without any synchronization because // stream goroutine will read it only after seeing a closed // headerChan which we'll close after setting this. s.recvCompress = state.encoding if len(state.mdata) > 0 { s.header = state.mdata } } else { s.noHeaders = true } close(s.headerChan) } if !endStream { return } t.closeStream(s, io.EOF, false, http2.ErrCodeNo, state.status(), state.mdata, true) } // reader runs as a separate goroutine in charge of reading data from network // connection. // // TODO(zhaoq): currently one reader per transport. Investigate whether this is // optimal. // TODO(zhaoq): Check the validity of the incoming frame sequence. func (t *http2Client) reader() { defer close(t.readerDone) // Check the validity of server preface. frame, err := t.framer.fr.ReadFrame() if err != nil { t.Close() return } if t.keepaliveEnabled { atomic.CompareAndSwapUint32(&t.activity, 0, 1) } sf, ok := frame.(*http2.SettingsFrame) if !ok { t.Close() return } t.onSuccess() t.handleSettings(sf, true) // loop to keep reading incoming messages on this transport. for { frame, err := t.framer.fr.ReadFrame() if t.keepaliveEnabled { atomic.CompareAndSwapUint32(&t.activity, 0, 1) } if err != nil { // Abort an active stream if the http2.Framer returns a // http2.StreamError. This can happen only if the server's response // is malformed http2. if se, ok := err.(http2.StreamError); ok { t.mu.Lock() s := t.activeStreams[se.StreamID] t.mu.Unlock() if s != nil { // use error detail to provide better err message code := http2ErrConvTab[se.Code] msg := t.framer.fr.ErrorDetail().Error() t.closeStream(s, streamError(code, msg), true, http2.ErrCodeProtocol, status.New(code, msg), nil, false) } continue } else { // Transport error. t.Close() return } } switch frame := frame.(type) { case *http2.MetaHeadersFrame: t.operateHeaders(frame) case *http2.DataFrame: t.handleData(frame) case *http2.RSTStreamFrame: t.handleRSTStream(frame) case *http2.SettingsFrame: t.handleSettings(frame, false) case *http2.PingFrame: t.handlePing(frame) case *http2.GoAwayFrame: t.handleGoAway(frame) case *http2.WindowUpdateFrame: t.handleWindowUpdate(frame) default: errorf("transport: http2Client.reader got unhandled frame type %v.", frame) } } } // keepalive running in a separate goroutune makes sure the connection is alive by sending pings. func (t *http2Client) keepalive() { p := &ping{data: [8]byte{}} timer := time.NewTimer(t.kp.Time) for { select { case <-timer.C: if atomic.CompareAndSwapUint32(&t.activity, 1, 0) { timer.Reset(t.kp.Time) continue } // Check if keepalive should go dormant. t.mu.Lock() if len(t.activeStreams) < 1 && !t.kp.PermitWithoutStream { // Make awakenKeepalive writable. <-t.awakenKeepalive t.mu.Unlock() select { case <-t.awakenKeepalive: // If the control gets here a ping has been sent // need to reset the timer with keepalive.Timeout. case <-t.ctx.Done(): return } } else { t.mu.Unlock() if channelz.IsOn() { t.czmu.Lock() t.kpCount++ t.czmu.Unlock() } // Send ping. t.controlBuf.put(p) } // By the time control gets here a ping has been sent one way or the other. timer.Reset(t.kp.Timeout) select { case <-timer.C: if atomic.CompareAndSwapUint32(&t.activity, 1, 0) { timer.Reset(t.kp.Time) continue } t.Close() return case <-t.ctx.Done(): if !timer.Stop() { <-timer.C } return } case <-t.ctx.Done(): if !timer.Stop() { <-timer.C } return } } } func (t *http2Client) Error() <-chan struct{} { return t.ctx.Done() } func (t *http2Client) GoAway() <-chan struct{} { return t.goAway } func (t *http2Client) ChannelzMetric() *channelz.SocketInternalMetric { t.czmu.RLock() s := channelz.SocketInternalMetric{ StreamsStarted: t.streamsStarted, StreamsSucceeded: t.streamsSucceeded, StreamsFailed: t.streamsFailed, MessagesSent: t.msgSent, MessagesReceived: t.msgRecv, KeepAlivesSent: t.kpCount, LastLocalStreamCreatedTimestamp: t.lastStreamCreated, LastMessageSentTimestamp: t.lastMsgSent, LastMessageReceivedTimestamp: t.lastMsgRecv, LocalFlowControlWindow: int64(t.fc.getSize()), SocketOptions: channelz.GetSocketOption(t.conn), LocalAddr: t.localAddr, RemoteAddr: t.remoteAddr, // RemoteName : } if au, ok := t.authInfo.(credentials.ChannelzSecurityInfo); ok { s.Security = au.GetSecurityValue() } t.czmu.RUnlock() s.RemoteFlowControlWindow = t.getOutFlowWindow() return &s } func (t *http2Client) IncrMsgSent() { t.czmu.Lock() t.msgSent++ t.lastMsgSent = time.Now() t.czmu.Unlock() } func (t *http2Client) IncrMsgRecv() { t.czmu.Lock() t.msgRecv++ t.lastMsgRecv = time.Now() t.czmu.Unlock() } func (t *http2Client) getOutFlowWindow() int64 { resp := make(chan uint32, 1) timer := time.NewTimer(time.Second) defer timer.Stop() t.controlBuf.put(&outFlowControlSizeRequest{resp}) select { case sz := <-resp: return int64(sz) case <-t.ctxDone: return -1 case <-timer.C: return -2 } }